Strong Approximation for Mixing Sequences with Infinite Variance
نویسندگان
چکیده
منابع مشابه
Moving Average Processes with Infinite Variance
The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...
متن کاملstrong approximation for itô stochastic differential equations
in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...
متن کاملApproximation via Correlation Decay When Strong Spatial Mixing Fails
Approximate counting via correlation decay is the core algorithmic technique used in the sharp delineation of the computational phase transition that arises in the approximation of the partition function of anti-ferromagnetic two-spin models. Previous analyses of correlation-decay algorithms implicitly depended on the occurrence of strong spatial mixing. This, roughly, means that one uses worst...
متن کاملStrong Law of Large Numbers for Ρ∗-mixing Sequences with Different Distributions
As for ρ∗-mixing sequences of random variables, Bryc and Smoleński [1] established the moments inequality of partial sums. Peligrad [10] obtained a CLT and established an invariance principles. Peligrad [11] established the Rosenthal-type maximal inequality. Utev and Peligrad [16] obtained invariance principles of nonstationary sequences. As for negatively associated (NA) random variables, Joag...
متن کاملInfinite Variance Branching Models
We consider two spatial branching models on R d : branching Brownian motion with a branching law in the domain of normal attraction of a (1 +) stable law, 0 < 1, and the corresponding high density limit measure valued diiusion. The longtime behaviour of both models depends highly on and d. We show that for d 2== the only invariant measure is 0, the unit mass on the empty connguration. Furthermo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2006
ISSN: 1083-589X
DOI: 10.1214/ecp.v11-1175